836 research outputs found

    Multiparty motion coordination: from choreographies to robotics programs

    Get PDF
    We present a programming model and typing discipline for complex multi-robot coordination programming. Our model encompasses both synchronisation through message passing and continuous-time dynamic motion primitives in physical space. We specify continuous-time motion primitives in an assume-guarantee logic that ensures compatibility of motion primitives as well as collision freedom. We specify global behaviour of programs in a choreographic type system that extends multiparty session types with jointly executed motion primitives, predicated refinements, as well as a separating conjunction that allows reasoning about subsets of interacting robots. We describe a notion of well-formedness for global types that ensures motion and communication can be correctly synchronised and provide algorithms for checking well-formedness, projecting a type, and local type checking. A well-typed program is communication safe, motion compatible, and collision free. Our type system provides a compositional approach to ensuring these properties. We have implemented our model on top of the ROS framework. This allows us to program multi-robot coordination scenarios on top of commercial and custom robotics hardware platforms. We show through case studies that we can model and statically verify quite complex manoeuvres involving multiple manipulators and mobile robots---such examples are beyond the scope of previous approaches

    A model analysis of the photosynthetic response of Vitis vinifera L. cvs Riesling and Chasselas leaves in the field: I. Interaction of age, light and temperature

    Get PDF
    The photosynthetic activity (A) of leaves of different ages on primary and secondary shoots of Riesling and Chasselas vines was measured under  field  conditions  in relation to photon flux density  (PFD) at various leaf temperatures. The data sets from 4 years and two locations (Geisenheim, Germany; Changins, Switzerland) were  analysed  using  non-linear  regression models  to determine possible  genetic  and/or  climate-induced differences  in  the  light  and  temperature  response between different  leaf ages. A non-rectangular hyperbola with  physiologically meaningful  parameters was  found  to  adequately describe  the  response to photon  flux density. For both  varieties, maximum photosynthetic  rates were  observed  on  leaves  of primary  shoots,  opposite  to  the  clusters,  at  a  leaf  temperature  of  27-32  °C  and  at  light  saturation. Young leaves  showed  a  less  pronounced  temperature  optimum. The  light  response  curves  of photosynthesis  of the  two  cultivars were  similar  over  a  temperature range  of  20-30  °C. Below  this  temperature, Riesling showed higher values of A than Chasselas in most cases, whereas  it was  the reverse when leaf  temperature exceeded 30 °C. This was particularly evident for leaves on secondary shoots and was related to differences  in the photorespiration rate. Mature Riesling  leaves had higher  apparent quantum  yields  (a)  and  lower  light saturation  indices (Is) than Chasselas at  leaf temperatures below  30-35 °C. Dark  respiration  (RD)  and  the light  compensation  point  (Ic)  responded  strongly  to temperature with differences between leaf ages but no consistent difference between varieties. Leaves on secondary shoots of both cultivars had the highest photo-synthetic  activity  during  the  ripening  period  of  the fruit

    Assume–Guarantee Distributed Synthesis

    Get PDF

    Motion session types for robotic interactions

    Get PDF
    Robotics applications involve programming concurrent components synchronising through messages while simultaneously executing motion primitives that control the state of the physical world. Today, these applications are typically programmed in low-level imperative programming languages which provide little support for abstraction or reasoning. We present a unifying programming model for concurrent message-passing systems that additionally control the evolution of physical state variables, together with a compositional reasoning framework based on multiparty session types. Our programming model combines message-passing concurrent processes with motion primitives. Processes represent autonomous components in a robotic assembly, such as a cart or a robotic arm, and they synchronise via discrete messages as well as via motion primitives. Continuous evolution of trajectories under the action of controllers is also modelled by motion primitives, which operate in global, physical time. We use multiparty session types as specifications to orchestrate discrete message-passing concurrency and continuous flow of trajectories. A global session type specifies the communication protocol among the components with joint motion primitives. A projection from a global type ensures that jointly executed actions at end-points are communication safe and deadlock-free, i.e., session-typed components do not get stuck. Together, these checks provide a compositional verification methodology for assemblies of robotic components with respect to concurrency invariants such as a progress property of communications as well as dynamic invariants such as absence of collision. We have implemented our core language and, through initial experiments, have shown how multiparty session types can be used to specify and compositionally verify robotic systems implemented on top of off-the-shelf and custom hardware using standard robotics application libraries

    Paracosm: {A} Test Framework for Autonomous Driving Simulations

    Get PDF

    A prospective evaluation of ultrasound as a diagnostic tool in acute microcrystalline arthritis.

    Get PDF
    The performance of ultrasound (US) in the diagnosis of acute gouty (MSU) arthritis and calcium pyrophosphate (CPP) arthritis is not yet well defined. Most studies evaluated US as the basis for diagnosing crystal arthritis in already diagnosed cases of gout and few prospective studies have been performed. One hundred nine consecutive patients who presented an acute arthritis of suspected microcrystalline arthritis were prospectively included. All underwent an US of the symptomatic joints(s) and of knees, ankles and 1(st) metatarsopalangeal (MTP) joints by a rheumatologist "blinded" to the clinical history. 92 also had standard X-rays. Crystal identification was the gold standard. Fifty-one patients had MSU, 28 CPP and 9 had both crystals by microscopic analysis. No crystals were detected in 21. One had septic arthritis. Based on US signs in the symptomatic joint, the sensitivity of US for both gout and CPP was low (60% for both). In gout, the presence of US signs in the symptomatic joint was highly predictive of the diagnosis (PPV = 92%). When US diagnosis was based on an examination of multiple joints, the sensitivity for both gout and CPP rose significantly but the specificity and the PPV decreased. In the absence of US signs in all the joints studied, CPP arthritis was unlikely (NPV = 87%) particularly in patients with no previous crisis (NPV = 94%). X-ray of the symptomatic joints was confirmed to be not useful in diagnosing gout and was equally sensitive or specific as US in CPP arthritis. Arthrocenthesis remains the key investigation for the diagnosis of microcrystalline acute arthritis. Although US can help in the diagnostic process, its diagnostic performance is only moderate. US should not be limited to the symptomatic joint. Examination of multiple joints gives a better diagnostic sensitivity but lower specificity

    The N-Terminal Domain and Glycosomal Localization of Leishmania Initial Acyltransferase LmDAT Are Important for Lipophosphoglycan Synthesis

    Get PDF
    Ether glycerolipids of Leishmania major are important membrane components as well as building blocks of various virulence factors. In L. major, the first enzyme of the ether glycerolipid biosynthetic pathway, LmDAT, is an unusual, glycosomal dihydroxyacetonephosphate acyltransferase important for parasite's growth and survival during the stationary phase, synthesis of ether lipids, and virulence. The present work extends our knowledge of this important biosynthetic enzyme in parasite biology. Site-directed mutagenesis of LmDAT demonstrated that an active enzyme was critical for normal growth and survival during the stationary phase. Deletion analyses showed that the large N-terminal extension of this initial acyltransferase may be important for its stability or activity. Further, abrogation of the C-terminal glycosomal targeting signal sequence of LmDAT led to extraglycosomal localization, did not impair its enzymatic activity but affected synthesis of the ether glycerolipid-based virulence factor lipophosphoglycan. In addition, expression of this recombinant form of LmDAT in a null mutant of LmDAT did not restore normal growth and survival during the stationary phase. These results emphasize the importance of this enzyme's compartmentalization in the glycosome for the generation of lipophosphoglycan and parasite's biology

    Challenges in control and autonomy of unmanned aerial-aquatic vehicles

    Get PDF
    Autonomous aquatic vehicles capable of flight can deploy more rapidly, access remote or constricted areas, overfly obstacles and transition easily between distinct bodies of water. This new class of vehicles can be referred as Unmanned Aerial-Aquatic Vehicles (UAAVs), and is capable of reaching distant locations rapidly, conducting measurements and returning to base. This greatly improves upon current solutions, which often involve integrating different types of vehicles (e.g. vessels releasing underwater vehicles), or rely on manpower (e.g. sensors dropped manually from ships). Thanks to recent research efforts, UAAVs are becoming more sophisticated and robust. Nonetheless numerous challenges remain to be addressed, and particularly dedicated control and sensing solutions are still scarce. This paper discusses challenges and opportunities in UAAV control, sensing and actuation. Following a brief overview of the state of the art, we elaborate on the requirements and challenges for the main types of robots and missions proposed in the literature to date, and highlight existing solutions where available. The concise but wide-ranging overview provided will constitute a useful starting point for researchers undertaking UAAV control work
    • 

    corecore